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Evolution of Organic Matter in a
Planetary System
Leading to Potential Origin of Life
And
Habitability beyond Earth
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My Motivation




Part I: From Interstellar to Comets
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Can Present-Day Comets Carry Primordial Material?
How can we “Trace” back through more than 4.6 BY?

Can there be "Tracer Phenomena” or “Tracer Species”
(Tracers) that we can use to follow back in Time?
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The Road is long and the
Journey has just began

to understand the Origin
of Life on Earth!

rth, Comets & Asteroids, and Origin of Life

- -

“Prebiotic Molecular Delivery” by Comets and
Asteroid Precursors some 4 Billion Years ago to
Earth, could have possibly triggered the
"Origin of Life on Earth”
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" Stellar Evolution: “Tracers” Connecting the Dots...
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Tracer 1: Amorphous Water Ice
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Amorphous Interstellar Ices

THE ASTROPHYSICAL JOURNAL, 740:109 (16pp), 2011 October 20
Boogert et al.
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Oort Cloud Comets — Similar Composition? DR Cloucs e e
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¢ Strikingly Similar Composition:

=Oort Cloud Comet(s)-and Injerstellar Ice Grains

Comet Composition (Hale-Bopp)
100 Crovisier and Bockelee-Morvan 100
- Space Science Reviews 90: 19-32, 1999
O
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Energy Not Too Much Please'
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Cryogenic Raw Material Energy iS
Cosmic Ices e HEERSE0N, essential to drive
Photons/Electrons Chemistry;
Cosmic Rays Temperature .
Debris/Collisions From Simple to
Complex!

Radicals, Ions,

Electrons, & Building Blocks
Molecules Atoms, Radicals &
Tons But too much of
Photons/Electrons
Temperature Cosmic Rays Energy can
Debris/Collisions
, destroy Complex
Amino Acids, Biomolecules
Micelles, etc. Amino Acids etc. MOIGCUleS!




¢ Complex Organic Molecules in ISM to COmets
. _~._ . - .-°'

Energy (Photons, Electrons, lons, etc.,)
+

Simple Ice (H,O, NH;, CH;0H) @ 5 K

Complex Organic Molecules (Interstellar & Cometary )
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Und’erstandlng Prebiotic Chemistry in ISM & Comets
— At the lce Spectroscopy Lab (ISk) @ JPL .

Two-Color, Two-Step,
Laser-Ablation & Laser-
lonization Time-of-Flight
Mass Spectrometry

Analyzing Ice
Composition in One
Scoop!
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Irradlatlon Products of Smgle and DuaI Component Ices 5K

NH, CH,OH H,0

e-, hv

irradiation
products as
CH;0OH ice

NH3 less reactive than CH;0OH under radiation
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Rosetta Observations

Table 1. Parent molecules used for fitting the COSAC spectrum according to Goesmann et al. (2015). Species in bold have never before

been identified in a comet. The last column indicates which of the molecules have been identified in the ROSINA-DFMS spectra during

the 2016 September 5 event.

Molecule Mass (Da) Rel. Identified
abundance (per cent) in DFEMS spectra

CHy Methane 16 0.7 Y

H>O Water 18 80.9 Y

CHN Hydrogencyanide 27 1.1 Y

CcO Carbon monoxide 28 1.1 Y

CHsN Methylamine 31 1.2 Y

CH;CN Acetonitrile 4] 0.5 minor

CHNO Isocyanic acid 43 0.5 Y

C,H40 Acetaldehyde 44 1.0 Y

CH3NO Formamide 45 3.7 Y

C,HsNH» Ethylamine 45 0.7 Y

CH3NCO Methyl isocyanate 57 3.1

C3HeO Acetone 58 1.0 Y

C,H;CHO Propanal 58 0.4 ?

CH;CONH> Acetamide 59 2.2 minor

CH,OHCHO Glycol aldehyde 60 1.0

CH»(OH)CH>(OH) Ethylene glycol 62 0.8 Y

Altwegg et al., MNRAS 469, S130-S141 (2017)

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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When-and Where Complex Organics are formed?

Tracing the Origins of
Complex Organics needs
“TRACER” Molecules

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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Primordial or Constantly Evolving?

Dense Molecular Clouds — Formation & Lifetime ~50 Myr (10K)
Protoplanetary Pebbles & Cometesimals — ~50 Myr (10 — 130 K)??
KBO Precursors — Scattered out by Saturn & Jupiter (Warmer?) (~30 K)
Rest of 4600 Myr — Hibernation/Cosmic Rays in KBO Region? (~30 K)
Centaur — A few Myrs (~50 K — 100 K)

Today’s Short Period Comets — A few Hundred Years?? (120 K — 350 K)

Source of Energy: Cosmic Rays, UV, and Non-Thermal

Can Tracers connect today’s Cometary Material to Primordial Composition

4 Billion Years Ago?
If not, the Story is only half-complete!

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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Tracer No. 1 — Amorphous Ice

« We know: Interstellar ice grains contain amorphous water ice

 We do not know: A comets interior ice phase: Amorphous or
Crystalline?

 We need to “Dig Deep” into a Comet and bring back unaltered
sample at <25 K to resolve this Key Question.

© 2018 California Institute of Technology. Government sponsorship acknowledged. 16
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Macroscopic Amorphous Ices in the Lab:
Simulating Intergjellar & Comet Ices

150 K Deposition 5 K Deposition
(Crystalline) (Amorphous)

© 2018 California Institute of Technology. Government sponsorship acknowledged. 18




Amorphous to Crystalline — Exothermicity
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Figure 2. DTA curves of pure (a) and impure (b-d) a~-H20.
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- Through-Mobility. gf Beactive Species

H,0:CH3;OH:NH5:CO (100:50:1:1)

Amorphous Ice
undergoes violent
molecular motion at
120-150 K, leading to
Irreversible changes in
ice composition,
followed by
Crystallization.

Gudipati et al., ApJ 583 _514-523_2003
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Processed ice ™~ 1m
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Amorphous Primordial
Interior
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~1m ~ 1000 m ~0.1m
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Future Cometary Missions!

>
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Cryogenic Cometary Nucleus Interior Sample Return
Mission will resolve this fundamental question.
Perhaps not in my Lifetime!

© 2018 California Institute of Technology. Government sponsorship acknowledged. 22
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Tracer 1: Amorphous Ice in Comets

Unless we "Dig Deep” into a Comet
And Determine Whether OR NOT It's
Interior is made of Amorphous Ice,

We haven't fully connected the
DOTs...

VAmorphous H,O Ice Excellent Tracer

© 2018 California Institute of Technology. Government sponsorship acknowledged. 23




Tracer No.2: CO; and O3

.'"

CO, is up to 20% of H,0

Can form Separate CO, lce Domains

© 2018 California Institute of Technology. Government sponsorship acknowledged. 24




Tracers from CO, Ice

-

..’ ... = = R >0,

« CO, is the second most abundant molecule
(Interstellar & Cometary)

« If CO,is >>5%, it starts forming aggregates
« If CO,is >>10% it start forming pure ice domains

* Interstellar ice has CO, >>10%, hence
Pure CO, domains must exist in interstellar ice grains.

« CO, Amorphous - Crystalline ~40 K

Let’s see what is going on with CO, Ice

© 2018 California Institute of Technology. Government sponsorship acknowledged. 25




, Photochemistry of CO,/H,0 Ice

. . . A " ——

Soumya Radhakrishnan, Murthy S. Gudipati, et al. (ApJ 2018)
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CO./H,0O Mixed Ice

With increasing H,O content
CO; and O; decrease. Pure
CO, ice is a must!

More O, and Os is produced in CO, than in H,0 Ice

Py Pyrene in CO, lce i
Ly, Irradiation @ 10 K 1275min|

2858 min

T T T T T T T
250 300 350 400 450 500 550 600
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Tracer No.2: CO; is a good Tracer

g = - -_

If Protoplanetary Disk is a Washing Machine,
CO3 should be gone!

We should look for CO3 in Cometary
Interior/Outgassing!

CO;is agood TRACER
Molecule
How about O,7??

28
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racer No. 3: Trapped Supervolatiles in H,0O-Ice or CO,-Ice

2 ROSINA MEASUREMENTS OF COMET GAS FOLLOWING OUTBURST

Altwegg et al.,

Relative abundances of comet gas after outburst on
29 July compared with measurements taken on 27 July

CH, NH, HO CH, HIN (0 CH, CHOH HS (0, OC SO, (S,

During an outburst of gas and dust from Comet 67P/Churyumov-Gerasimenko on 29 July 2015, Rosetta’s
ROSINA instrument detected a change in the composition of gases compared with previous days.

The graph shows the relative abundances of various gases after the outburst, compared with measurements
two days earlier (water vapour is indicated by the black line)

Credits: ESA/Rosetta/ROSINA/UBern/ BIRA/LATMOS/LMM/IRAP/MPS/SwRI/TUB/UMich
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Laboratory Studies at ISL of JPL
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<o R Spectroscopy of
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V4
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Outgassmg of O,, CO, & CO, in H,0 Ice
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" Thermal Gradients and Volatile Production

Crystalline Ice
>160 K ﬁ
Trapped CO,. CO, O,, etc.
>140 K / ﬁ \

Excess CO, (ice)

>90 K

Excess Supervolatiles (CO, O,, N,, CH,, etc)
>40 K
<25K Primordial Interstellar Ice
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Part I: Conclusions

>

,:.8-: o ."‘-.'.: : pp—

We need more Spectroscopic Observations (JWST?)
of condensed phase Protoplanetary Disk at high spatial resolution!

Tracers that lead us all the way back to the Solar System formation.
« Amorphous H,0 Ice

« CO; 057

« S,, D,0, “N/™N, ?? (not discussed here)

Thermal Evolution of Amorphous Ice Composition is Complex
« Determined by CO, concentration
« Determined by maximum temperature conditions
<25 K — Primordial — Supervolatile Rich (CO, N,, O,, CH,, Ar, etc.)
<100 K- CO, depleted
<120 K — Amorphous
>140 K — Volatile depleted & Crystalline.

© 2018 California Institute of Technology. Government sponsorship acknowledged.




¢ < _Part II: Habitability in Evolved Solar Systems

Habitability is necessary but not sufficient for Astrobiology

Is there Life in Our Solar System beyond Earth?
Which environments are Habitable?
“Ocean Worlds” — Europa, Enceladus, Titan, etc...

© 2018 California Institute of Technology. Government sponsorship acknowledged. 36
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¥ Ocean World Europa — Radiation & Habitability
’. ¥ . ;.3 p—— . : oy '., g p—
Electrons, Protons, and lons from Jupiter’s Magnetosphere Reach Europa’s Surface.

Electrons penetrate the deepest into Europa’s surface:
Trailing (colored) Hemisphere <25 MeV; Leading Hemisphere: >25 MeV

© 2018 California Institute of Technology. Government sponsorship acknowledged. 38




DoeSs Radiation Provide Energy for Habitability in Europa?

Potentially Habitable Europa Ocean

© 2018 California Institute of Technology. Government sponsorship acknowledged.




¢ Modeling Europa’s Radiation Dose

Based on liquid water or empirical data — no lab data YET published

s -

Sulfur Oxygen Protons Electrons Bremsstrahlung
1 E+01 i + Bremsstrahlung)
Electrons(compared to il I I
. ) % fHH Cc
Protons and ions) £ 101 Pl SR <'em g Madifica 50
()] |
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L] L] e H
into materials. f E-03 \ s
Q S P E D
§ ’55 H”‘t\
()
Bremsstrahlung (X-rays) reas |
: 2 RIS HH N
produced by Electrons in g Sputerning TN 'S
matter penetrates even [l , X N
deeper Opticallinfrared/Microwave 5 \\
per. 1 E_og L_SPECtrascap | \ \
0.01 0.1 1 10 100 1000 10000
Depth in water ice (mm)
Plot from: Paranicas et al. (2002)
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Electron Impact on Matter:
= Primary and Secondary Radiation

Secondary
Photons
(X-ray to UV)

Radiation Protected

Secondary )
Tertiary Electrons (e") Electron Trajectory

Electrons (e°) Simulation
Through Materials

© 2018 California Institute of Technology. Government sponsorship acknowledged.
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Present Capabilities of the ISL @ JPL
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|3 Ice Chamber for Europa’s High-Energy

T)\ S & 7 [ 2
\kﬁy " = Electron And.Radiation-Egvironment Testing

7

Outer Telescope with
vacuum seal O-rings.

Inner 2.5-inch diameter
tube for water ice frozen
in the tube or loaded as
crushed powder.

Ice Core @ 110 K

Insulated for 100 K operation
Using liquid nitrogen cooling. /

> =
'. VR ..p: ot
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ICE-HEART Crew in Action @ NIST MIRF
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fHow to Quantify Bremsstrahlung (X-rays)?

=" By Removing Secondgary.Electrons

/D\ \ \ HALBACH
. 1 » .
| U F . ARRAY
n-line " agne araday cup In-line Farada cu
detector NO:““:‘(! detector detector delecvtorp

SmCor nn net de H((ts pr mar v electrons

5kG Halbach Cylindrical __ [T O S S
Magnet @ 80 K i il
Deflecting Primary and
Secondary Electrons

E n a b I eS First lce  Magnet Second Ice
. . l Column  Section Column
Q ua ntlfl cation Of )G ray Above: typical secondary particle generation in SERE) Benif]) Veibieteet

the ICE-HEART when high energy electrons
impinge upon ice with no magnet.

Yields and Penetration
Depths

Right: Inserting a strong SmCo magnet (5
kGauss) into the chamber causes electrons to
be deflected to the side, so that they no longer

impinge upon the detector.
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Organic (PAH) Damage by 1MeV Electrons

Y B, gt

UV-VIS Absorption Spectra of PAHs In Polyethylene Film
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First JPL-NIST MIRF Data for 10 MeV Primary Electrons
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4

Europa Ice Analogs (10 cm) with NaCl & MgSO,
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Part ll: Conclusions

>

Solar System Ocean Worlds Such as Enceladus harbor Complex
Organic Molecules.

Europa Radiation can Sustain Life and Destroy Life as well.
We do not yet know whetherLife exists on Europa in deep Ocean.

Europa’s surface may not be Habitable up to one meter beneath
the surface.
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. Postdoctoral Opportunltles at ISL @ JPL
— 3‘ - = = it
We are Always Open to Outstandlng Laboratory Experlmentallsts Post-Doctoral,
Visiting Students (and Faculty) @ Ice Spectroscopy Lab

Daniel
Vishaal
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ISL Team (continued)
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